Ram Raj Ravi Anil Bala Raj Ram Ragu Ravi Anil Bala Ragu 6406531736842. ** Ram Ragu Ravi Anil Bala Raj 6406531736843. Ragu Raj 6406531736844. **

MLF

Section Id: 64065333935

Section Number: 7

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 16

Number of Questions to be attempted: 16

Section Marks :	50	
Display Number Panel :	Yes	
Group All Questions :	No	
Enable Mark as Answered Mark for Review and	Yes	
Clear Response :	163	
Maximum Instruction Time :	0	
Sub-Section Number :	1	
Sub-Section Id :	64065373942	
Question Shuffling Allowed :	No	
Is Section Default? :	null	
Question Number: 99 Question Id: 640653521088	Question Type : MCQ Is Question	
Mandatory : No Calculator : None Response Time	: N.A Think Time : N.A Minimum Instruction	
Time: 0		
Correct Marks : 0		
Question Label : Multiple Choice Question		
THIS IS QUESTION PAPER FOR THE SUBJECT "DIPLO	OMA LEVEL : MACHINE LEARNING	
FOUNDATIONS"		
ARE YOU SURE YOU HAVE TO WRITE EXAM FOR TH	IS SUBIECT?	
CROSS CHECK YOUR HALL TICKET TO CONFIRM THE SUBJECTS TO BE WRITTEN.		
(IF IT IS NOT THE CORRECT SUBJECT, PLS CHECK THE SECTION AT THE <u>TOP</u> FOR THE SUBJECTS		
REGISTERED BY YOU)		
Options :		
6406531736845. ✔ YES		
6406531736846. * NO		
Sub-Section Number :	2	
Sub-Section Id :	64065373943	
Question Shuffling Allowed :	Yes	
Is Section Default? :	null	

Question Number: 100 Question Id: 640653521093 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Choice Question

Find the rank one approximation of the matrix $A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix}$ corresponding

to its largest eigenvalue.

Options:

6406531736865. ***** $\begin{bmatrix} 4 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

6406531736866. ***** $\begin{bmatrix} 0 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 \\ 0 & -9 \\ 0 & 0 \end{bmatrix}$ 6406531736867. *****

 $\begin{bmatrix} 0 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix}$ 6406531736868. \checkmark

Question Number: 101 Question Id: 640653521100 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label : Multiple Choice Question

For the dataset $D = \{x_1, x_2, x_3, \dots, x_n\}$, the matrix

$$C = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T$$

is called the covariance matrix

Options:

6406531736889. * always.

6406531736890. [♣] only when the dataset is centered.

6406531736891. * only when the dataset has the maximum variance.

6406531736892. ✓ Both when the dataset is centered and when the dataset has the maximum variance are correct

Sub-Section Number: 3

Sub-Section Id: 64065373944

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 102 Question Id: 640653521092 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks:5

Question Label: Multiple Choice Question

Let $A = \begin{bmatrix} 1 & -i & -1 \\ i & -1 & -i \\ -1 & i & -1 \end{bmatrix}$. What is the unitary diagonalization of A?

Options:

$$\begin{bmatrix} -2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -i/\sqrt{6} & -i/\sqrt{3} & i/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} -2/\sqrt{6} & i/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{3} & i/\sqrt{3} & 1/\sqrt{3} \\ 0 & -i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} -2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & -i/\sqrt{3} & i/\sqrt{2} \\ i/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} -2/\sqrt{6} & -1/\sqrt{6} & i/\sqrt{6} \\ 1/\sqrt{3} & -i/\sqrt{3} & 1/\sqrt{3} \\ 0 & i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} -2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & -i/\sqrt{3} & i/\sqrt{2} \\ i/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} -2/\sqrt{6} & -1/\sqrt{6} & i/\sqrt{6} \\ 1/\sqrt{3} & -i/\sqrt{3} & 1/\sqrt{3} \\ 0 & i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$\begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{3} & 0 \\ 0 & -i/\sqrt{3} & i/\sqrt{2} \\ i/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} -2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2} & 0 & i/\sqrt{2} \\ 1/\sqrt{3} & -i/\sqrt{3} & 1/\sqrt{3} \\ 0 & i/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Sub-Section Number: 4

Sub-Section Id: 64065373945

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 103 Question Id: 640653521098 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Let $f(x,y) = x^2y^2 - 2x - 2y$. Which among the following options are correct?

Options:

6406531736881. ***** (0, 0) is a stationary point of *f*.

6406531736882. **✓** (1, 1) is a stationary point of *f*.

6406531736883. # *f* attains the minimum at (0, 0).

6406531736884. * *f* attains the minimum at (1, 1).

Sub-Section Number: 5

Sub-Section Id: 64065373946

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 104 Question Id: 640653521089 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Selectable Option: 0

Question Label: Multiple Select Question

Given three unitary matrices A,B, and C, which of the following statements is/are true?

Options:

6406531736847. **✓** *ABC* is always a unitary matrix.

6406531736848. * A + B is a Hermitian matrix.

6406531736849. **✓** *AB,BC, and AC* are unitary matrices.

6406531736850. * ABC may not be a unitary matrix.

Question Number: 105 Question Id: 640653521090 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Selectable Option: 0

Question Label: Multiple Select Question

What can be the eigenvalues for a matrix that is both unitary as well as Hermitian?

Options:

6406531736851. * 0

6406531736852.

1

6406531736853. 🗸 -1

6406531736854. ***** i

6406531736855. * 2

6406531736856. * -2

Question Number: 106 Question Id: 640653521097 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Selectable Option: 0

Question Label: Multiple Select Question

Let A be a $n \times n$ positive definite matrix. Then which among the following statements are correct?

Options:

6406531736877. \checkmark A^{-1} is positive definite

6406531736878. \checkmark A+B is positive definite, if B is positive definite.

6406531736879. $\Re \operatorname{Rank}(A) = n - 1$

6406531736880. \checkmark A^2 is positive definite.

Question Number: 107 Question Id: 640653521099 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Selectable Option: 0

Question Label: Multiple Select Question

Which of the following are the limitations of PCA?

Options:

6406531736885. * PCA does work well for non-linearly correlated data.

6406531736886. ✓ PCA always consider the low variance components in the data as noise and recommend us to throw away those components. But, sometimes those components play a major role in a supervised learning task.

6406531736887. ✓ If the variables are correlated, PCA can achieve dimension reduction. If not, PCA just orders them according to their variances.

6406531736888. ✓ PCA always finds orthogonal principal components. Sometimes, our data demands non-orthogonal principal components to represent the data.

Sub-Section Number: 6

Sub-Section Id: 64065373947

Question Shuffling Allowed : Yes

Is Section Default?: null

Question Number: 108 Question Id: 640653521091 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Selectable Option: 0

Question Label: Multiple Select Question

Which of the following matrices are both Hermitian and unitary?

Options:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
6406531736857.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
6406531736858.

$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
 6406531736859. **

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
6406531736860.

Sub-Section Number: 7

Sub-Section Id: 64065373948

Question Shuffling Allowed : Yes

Is Section Default?: null

Question Number : 109 Question Id : 640653521101 Question Type : SA Calculator : None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, x_3 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$C = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_i)(x_i - \bar{x}_i)^T$$

Here
$$\bar{x}_i = \frac{x_1 + x_2 + x_3}{3}$$

What is the sum of the eigenvalues of the covariance matrix C corresponding to the given data points x_1 , x_2 , x_3 ? Enter the answer correct to two decimals accuracy.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

1.32 to 1.36

Question Number: 110 Question Id: 640653521102 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

Consider the data points

$$x_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

If we are projecting this dataset onto the first principal component, then what is the projected variance? Enter the answer correct to two decimals accuracy.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas : PlainText

Possible Answers:

Question Number: 111 Question Id: 640653521105 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

If f(20) = 1, f'(20) = 10, and f''(20) = 5, then what is second order

approximate value of f(10)? Enter the answer as integer.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

151

Sub-Section Number: 8

Sub-Section Id: 64065373949

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 112 Question Id: 640653521103 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

What is the maximum area of rectangle than can be inscribed in an ellipse

of the equation $\frac{x^2}{2} + y^2 = 1$? Enter the answer correct to 2 decimals accuracy.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText		
Possible Answers :		
2.6 to 3		
Question Number : 113 Question Id : 640653521104 Question Type : SA Calculator : None		
Response Time : N.A Think Time : N.A Minimum Instruction Time : 0		
Correct Marks : 4		
Question Label : Short Answer Question		
What is the value of the function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_2x_3 - 2x_3x_1$ evaluated at the point obtained after one step of gradient descent where the current iterate is $(1, 1, 1)$? Assume $\eta = 1$. Enter the answer as integer.		
Response Type: Numeric		
Evaluation Required For SA : Yes		
Show Word Count: Yes		
Answers Type: Equal		
Text Areas: PlainText		
Possible Answers :		
-3		
Sub-Section Number :	9	
Sub-Section Id :	64065373950	
Question Shuffling Allowed :	No	
Is Section Default? :	null	
Question Id: 640653521094 Question Type: COMPREHENSION Sub Question Shuffling		
Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix		

Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction Time : 0

Question Numbers: (114 to 115)

Question Label: Comprehension

Consider a matrix $A = \begin{bmatrix} 2 & b \\ b & 8 \end{bmatrix}$. Answer the given subquestions:

Sub questions

Question Number: 114 Question Id: 640653521095 Question Type: MCQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

For what value of b is the matrix

A positive definite?

Options:

6406531736869. ***** *b* < 4

6406531736870. ***** b > -4

6406531736871. * b > 4 and b < -4

6406531736872. \checkmark -4 < b < 4

Question Number: 115 Question Id: 640653521096 Question Type: MCQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Find the minimum value of

$$\frac{1}{2}(2x^2 + 2bxy + 8y^2) - x$$
 for b in the

range defined in the previous question.

Options:

$$6406531736873. \checkmark \frac{4}{b^2 - 16}$$

6406531736874. *****
$$\frac{-4}{b^2 - 16}$$

6406531736875. *****
$$\frac{8}{b^2 - 16}$$

6406531736876. *****
$$\frac{-8}{b^2 - 16}$$

Java

Section Id: 64065333936

Section Number: 8

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 16

Number of Questions to be attempted: 16

Section Marks: 50

Display Number Panel: Yes

Group All Questions: No

Enable Mark as Answered Mark for Review and

Clear Response :

Maximum Instruction Time: 0

Sub-Section Number: 1

Sub-Section Id: 64065373951

Question Shuffling Allowed: No

Is Section Default?: null

Question Number: 116 Question Id: 640653521106 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Yes