If the application is run locally on http://127.0.0.1:5000 using the command python app.py stable, what will be rendered by the browser for URL http://127.0.0.1:5000/home?

Options:

static url path: /static

6406531929679. static folder: C:\home\mad_1\static

static url path: /stable

6406531929680. * static folder: C:\home\mad_1\stable

static url path: C:\home\mad_1\stable

6406531929681. ** static folder: /stable

6406531929682. static folder: C:\home\mad_1\static

static url path: /stable

MLF

Section Id: 64065339073

Section Number: 8

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 15

Number of Questions to be attempted: 15

Section Marks: 50

Display Number Panel: Yes

Group All Questions: No

Enable Mark as Answered Mark for Review and	Yes
Clear Response :	
Maximum Instruction Time :	0
Sub-Section Number :	1
Sub-Section Id :	64065382594
Question Shuffling Allowed :	No
Is Section Default? :	null
Question Number : 119 Question Id : 64065357787	1 Question Type : MCQ Is Question
Mandatory : No Calculator : None Response Time :	N.A Think Time : N.A Minimum Instruction
Time: 0	
Correct Marks : 0	
Question Label : Multiple Choice Question	
THIS IS QUESTION PAPER FOR THE SUBJECT "DIPLO	OMA LEVEL : MACHINE LEARNING
FOUNDATIONS (COMPUTER BASED EXAM)"	
ARE YOU SURE YOU HAVE TO WRITE EXAM FOR THI	S SUBJECT?
CROSS CHECK YOUR HALL TICKET TO CONFIRM TH	E SUBJECTS TO BE WRITTEN.
(IF IT IS NOT THE CORRECT SUBJECT, PLS CHECK TH	E SECTION AT THE <u>TOP</u> FOR THE SUBJECTS
REGISTERED BY YOU)	
Options :	
6406531929719. ✔ YES	
6406531929720. * NO	
Sub-Section Number :	2
Sub-Section Id :	64065382595
Question Shuffling Allowed :	Yes
Is Section Default? :	null

Question Number : 120 Question Id : 640653577872 Question Type : MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statements are correct?

Options:

6406531929721. \checkmark **I**(444%3 = 0 and $\pi \in \mathbb{R}$) = 1.

6406531929722. Mean Squared Error (MSE) is a suitable loss function for classification problems.

The loss obtained after applying encoder and decoder functions to a given data can be negative.

6406531929724.

✓ Gaussian mixture model is a family of distributions for modeling multimodal data.

Question Number: 121 Question Id: 640653577884 Question Type: MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statements is/are true?

Options:

6406531929745. ✓ Row space of a matrix is orthogonal to the null space of the matrix.

6406531929746. * Row space of a matrix is orthogonal to the null space of transpose of the matrix.

6406531929747. ✓ Dimension of row space of a matrix is always equal to the dimension of column space of the matrix.

6406531929748. * Dimension of row space of a matrix need not be equal to the dimension of column space of the matrix.

Question Number: 122 Question Id: 640653577886 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following matrices have eigenvectors as $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$?

Options:

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$
6406531929753.

$$\begin{bmatrix} 6 & 4 & 8 \\ 4 & 0 & 4 \\ 8 & 4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 4 \\ 4 & 0 & 4 \\ 8 & 4 & 6 \end{bmatrix}$$
 6406531929755. **

$$\begin{bmatrix} 3 & 1 & 0 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

Question Number: 123 Question Id: 640653577887 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let the matrix $A \in \mathbb{R}^{d \times d}$ be diagonalizable, then which of the following statements is/are true for A?

Options:

6406531929757. \times A must be symmetric.

6406531929758. \checkmark We can find a basis of eigenvectors for \mathbb{R}^d .

6406531929759. * We can find an orthonormal basis of eigenvectors for \mathbb{R}^d .

A can have some repeated eigenvalues but must have distinct independent 6406531929760. \checkmark eigenvectors.

Sub-Section Number: 3

Sub-Section Id: 64065382596

Question Shuffling Allowed : Yes

Is Section Default?: null

Question Number: 124 Question Id: 640653577879 Question Type: MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 4 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let $A, B \in \mathbb{R}^{n \times n}$ be two matrices, then which among the following statements are correct?

Options:

6406531929737. $\checkmark x \in \text{Nullspace}(A) \implies x \in \text{Nullspace}(BA).$

6406531929738. $\checkmark x \in \text{Columnspace}(A) \implies x \in \text{Columnspace}(B), \text{ where } A = BC, C \in \mathbb{R}^{n \times n}.$

6406531929739. $\checkmark x \in \text{Nullspace}(AB) \implies Bx \in \text{Nullspace}(A).$

6406531929740. * $x \in \text{Nullspace}(AB) \implies x \in \text{Nullspace}(B)$.

Question Number: 125 Question Id: 640653577885 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time:0

Correct Marks: 4 Max. Selectable Options: 0

Question Label: Multiple Select Question

Consider the solution of the linear regression problem (Ax = b) using least

squares method, where
$$A = \begin{bmatrix} 1 & 5 & 5 \\ 2 & 3 & 5 \\ 0 & 7 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 7 \\ 8 \\ 4 \end{bmatrix}$.

Based on this data, which of the following statements is/are true?

Options:

6406531929749. \checkmark The error value is zero as we can get an x such that Ax is exactly equal to b.

6406531929750. ** The error value is non-zero as we cannot get an x such that Ax is exactly equal to b.

Least squares solution for
$$x$$
 is $\begin{bmatrix} 2\\0.5\\0.5 \end{bmatrix}$.

Least squares solution for x is $\begin{bmatrix} 1 \\ 0.6 \\ 0.4 \end{bmatrix}.$

Sub-Section Number: 4

Sub-Section Id: 64065382597

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 126 Question Id: 640653577877 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Choice Question

Find the linear approximation of the function $f(x,y) = ye^{xy}$ in the neighbourhood of (0,1).

Options:

 $6406531929729. \checkmark x + y$

6406531929730. ***** x + 2y

6406531929731. * 2x + y

6406531929732. ***** 2x + 3y

Question Number: 127 Question Id: 640653577878 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 4

Question Label: Multiple Choice Question

Let $f: \mathbb{R}^2 \to \mathbb{R}$, given by $f(x,y) = x^2 + y^2$. Consider the following algorithm:

$$X_{n+1} = X_n - h\nabla f(X_n), \quad X_i \in \mathbb{R}^2, i:1,2,... \text{ and } h > 0,$$

where h is the step size and $\nabla f(X_n)$ is the gradient of f evaluated at X_n . Fix h = 0.25 and $X_0 = (1,3)$, which among the following points does the algorithm converge to?

Options:

6406531929733. * (1, 3)

6406531929734. * (1/2, 1/6)

6406531929735. 🗸 (0, 0)

6406531929736. * The algorithm does not converge

Sub-Section Number: 5

Sub-Section Id: 64065382598

Question Shuffling Allowed : Yes

Is Section Default?: null

Question Number: 128 Question Id: 640653577873 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

Consider the following dataset with 5 data points:

$$\begin{array}{c|ccc} X & y \\ \hline (2,3) & 5 \\ (-1,1) & 2 \\ (4,2) & 7 \\ (0,-2) & 1 \\ (-3,5) & 4 \\ \end{array}$$

We want to fit a linear regression model of the form $f(X) = w^T x$ to this dataset, where $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the value of the loss function L for this dataset which is defined as $L = \max_i |f(x^i) - y^i|$.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

5

Question Number: 129 Question Id: 640653577874 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 4

Question Label: Short Answer Question

Let $f(x_1, x_2, x_3) = \frac{x_1 + x_2 + x_3}{2}$ be used as an encoder fund	action and $g(u) = [u, u, u]$
be used as a decoder function for dimensionality reduction	of the dataset $X_1 = [1, 2, 3]$,
$X_2 = [2,4,6], X_3 = [3,6,9], X_4 = [4,8,12].$ Calculate the	ne reconstruction error
$\left(R(f,g) = \frac{1}{n} \sum_{i=1}^{n} x_i - g(f(x_i)) ^2\right) $ for this encoder decoder	pair. Enter the answer
correct to one decimal place.	
Response Type: Numeric	
Evaluation Required For SA : Yes	
Show Word Count: Yes	
Answers Type: Range	
Text Areas : PlainText	
Possible Answers :	
37 to 38	
Question Number: 130 Question Id: 6406535778	83 Question Type : SA Calculator : None
Response Time: N.A Think Time: N.A Minimum I	nstruction Time : 0
Correct Marks : 4	
Question Label : Short Answer Question	
Let P_1 be the projection matrix onto the line spanne	d by the vector $a = [1, 2, 3]^T$. Let P_2 be the
projection matrix that projects vectors onto the plan	ne perpendicular to span of a . Find the
determinant of $P_1 + P_2$.	
Response Type: Numeric	
Evaluation Required For SA : Yes	
Show Word Count: Yes	
Answers Type: Equal	
-	
Text Areas : PlainText	
Possible Answers :	

64065382599

Yes

null

Sub-Section Id:

Is Section Default?:

Question Shuffling Allowed :

Question Number: 131 Question Id: 640653577875 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

Find the directional derivative of $f(x, y, z) = x(x^2 - y^2) - z$ at a point D(1, -1, 0) in the direction of vector $\hat{h} = \frac{2}{7}i - \frac{3}{7}j + \frac{6}{7}k$. Enter the answer correct to two decimal places.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

-1.16 to -1.12

Sub-Section Number: 7

Sub-Section Id: 64065382600

Question Shuffling Allowed : Yes

Is Section Default?: null

Question Number : 132 Question Id : 640653577876 Question Type : SA Calculator : None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

Let the function $f(x) = \begin{cases} ax - 3, & x < 2\\ 4, & x = 2\\ 2x, & x > 2 \end{cases}$

be continuous for all $x \in \mathbb{R}$. Then, find the value of a.

Enter the answer correct to one decimal place.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

3.5

Sub-Section Number: 8

Sub-Section Id: 64065382601

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653577880 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (133 to 134)

Question Label : Comprehension

Let
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$.

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 133 Question Id: 640653577881 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Is the system Ax = b consistent?

Options:

6406531929741. * Yes

Question Number: 134 Question Id: 640653577882 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

Using the least square approximation, find the length of the projection vector *p* of *b* onto the column space of *A*. Enter the answer correct to two decimal places.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas: PlainText

Possible Answers:

3.12 to 3.16

Java

Yes

Section Id: 64065339074

Section Number: 9

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 16

Number of Questions to be attempted: 16

Section Marks: 50

Display Number Panel: Yes

Group All Questions: No

Enable Mark as Answered Mark for Review and

Clear Response:

Maximum Instruction Time: 0