Correct Marks: 2

Question Label: Multiple Choice Question

Define null hypothesis and alternative hypothesis

Options:

6406532041775. * $H_0: \mu = 98.5, H_A: \mu \neq 98.5$

6406532041776. $\checkmark H_0: \mu = 98.5, H_A: \mu > 98.5$

6406532041777. * $H_0: \mu = 98.5, H_A: \mu < 98.5$

6406532041778. * $H_0: \mu \neq 98.5, H_A: \mu = 98.5$

Question Number: 44 Question Id: 640653611405 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

Find the *P*-value. Enter the answer correct to two decimal places.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Range

Text Areas : PlainText

Possible Answers:

0.01 to 0.07

Sem2 Maths2

Section Id: 64065341321

Section Number :	3
Section type :	Online
Mandatory or Optional :	Mandatory
Number of Questions :	15
Number of Questions to be attempted :	15
Section Marks :	50
Display Number Panel :	Yes
Section Negative Marks :	0
Group All Questions :	No
Enable Mark as Answered Mark for Review and Clear Response :	Yes
Maximum Instruction Time :	0
Sub-Section Number :	1
Sub-Section Id :	64065388146
Question Shuffling Allowed :	No
Is Section Default? :	null
Question Number : 45 Question Id : 6406536114	06 Question Type : MCQ Is Question
Mandatory : No Calculator : None Response Tim	e: N.A Think Time: N.A Minimum Instruction
Time: 0	
Correct Marks : 0	
Question Label : Multiple Choice Question	
THIS IS QUESTION PAPER FOR THE SUBJECT "FOU	JNDATION LEVEL : SEMESTER 2:
MATHEMATICS FOR DATA SCIENCE 2 (COMPUTER	R BASED EXAM)"
ARE YOU SURE YOU HAVE TO WRITE EXAM FOR T	HIS SUBJECT?
CROSS CHECK YOUR HALL TICKET TO CONFIRM T	HE SUBJECTS TO BE WRITTEN.
(IF IT IS NOT THE CORRECT SUBJECT, PLS CHECK	THE SECTION AT THE <u>TOP</u> FOR THE SUBJECTS

REGISTERED BY YOU)

6406532041780. VYES

6406532041781. * NO

Sub-Section Number: 2

Sub-Section Id: 64065388147

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 46 Question Id: 640653611407 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statement(s) is/are true for an $n \times n$ matrix A?

Options:

Let $det(A) \neq 0$. Determinant of A is unaltered by all the elementary row operations of A.

6406532041782. **

6406532041783. \checkmark Rank of A is unaltered by elementary row operations of A.

Suppose any row R_i of A is replaced by a scalar multiple αR_i , then determinant of A is $\alpha det(A)$.

6406532041785. \blacksquare If AB = BA for some $n \times n$ matrix B, then det(A) = det(B).

Question Number: 47 Question Id: 640653611408 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statement(s) is/are true for a system of linear equations Ax = b?

Options:

The system Ax = b has a solution if b can be expressed as a linear 6406532041786. \checkmark combination of the columns of A.

For any b in the column space of A, if x_1 and x_2 are solutions of the linear equation Ax = b, then $\alpha x_1 + \beta x_2$ is also a solution of Ax = b.

If the columns of A are linearly dependent, then the system has no solution.

If the system Ax=0 has a unique solution, then the columns of 6406532041789. \checkmark A are linearly independent.

Question Number: 48 Question Id: 640653611410 Question Type: MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let V be the vector space of all 2×2 matrices with usual addition and scalar multiplication. Which of the following set(s) form a subspace of V?

6406532041794.
$$\checkmark$$
 $W_1=\left\{\begin{pmatrix} a&b\\c&d\end{pmatrix}\in M_2(\mathbb{R})\colon trace(A)=0\right\}$

$$W_2=\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\in M_2(\mathbb{R})\colon ad=bc\right\}$$
 6406532041795. **

6406532041796.
$$*$$
 $W_3=\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2(\mathbb{R})\colon A \text{ is invertible}\right\}$

$$W_4 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \colon a = d = 0, b = -c \right\}$$
 6406532041797.

Question Number : 49 Question Id : 640653611411 Question Type : MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let V be a subspace of \mathbb{R}^4 defined as $V = \{(a, b, c, d) : a + b = c + d\}$ with usual addition and scalar multiplication. Then which of the following set(s) form a basis for V?

Options:

6406532041800.
$$\checkmark$$
 {(1, -1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}

Sub-Section Number: 3

Sub-Section Id: 64065388148

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 50 Question Id: 640653611409 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let
$$A = \begin{pmatrix} -1 & 1 & -2 \\ 1 & 2 & -2 \\ 6 & c & d \end{pmatrix}$$
. Which of the following statement(s) is/are true for A ?

Options:

If c=3 and d=0, then the system Ax=0 does not have a unique solution.

If c=0 and d=4, then the homogeneous system Ax=0 has a unique solution.

6406532041792. \blacksquare If c=3 and d=0, then the columns of A are linearly independent.

If c=0 and d=4, then the homogeneous system Ax=0 has 6406532041793. \checkmark

Question Number : 51 Question Id : 640653611416 Question Type : MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the vector spaces in the options below have dimension 2.

6406532041811.
$$\checkmark span\{(1,-1,1),(1,0,2),(3,-2,4)\}$$

The solutions of the homogeneous

system
$$Ax = 0$$
 where $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

6406532041813.
$$\checkmark$$
 $\{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0\}$

6406532041814. *
$$\{(x,y,z)\in\mathbb{R}^3: x+y=2, y+3z=-5\}$$

Sub-Section Number: 4

Sub-Section Id: 64065388149

Question Shuffling Allowed: No

Is Section Default?: null

Question Id : 640653611412 Question Type : COMPREHENSION Sub Question Shuffling Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (52 to 54)

Question Label: Comprehension

Let $L: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation given by

$$L(x_1, x_2, x_3, x_4) = (x_2, x_3, x_4, 0)$$
 and $R: \mathbb{R}^4 \to \mathbb{R}^4$

be a linear transformation given by $R(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$.

Let
$$\mathcal{B} = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$$

be the standard ordered basis.

Using the above information answer the given subquestions.

Sub questions

Question Number: 52 Question Id: 640653611413 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statement(s) is/are true?

Options:

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 is the matrix corresponding to

L with respect to the basis \mathcal{B} for both domain

6406532041802. * and codomain.

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 is the matrix corresponding

to R with respect to the basis \mathcal{B} for both

6406532041803. ***** domain and codomain.

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 is the matrix corresponding to

L with respect to the basis \mathcal{B} for both domain and codomain.

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 is the matrix corresponding to

R with respect to the basis \mathcal{B} for both 6406532041805. ✓ domain and codomain.

Question Number: 53 Question Id: 640653611414 Question Type: MSQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statement(s) is/are true?

Options:

6406532041806. $\forall v \in \mathbb{R}^4 \text{ such that } Lv = 0, \text{ then } v = 0.$

6406532041807. $\checkmark rank(L) = rank(R) = 3$

6406532041808. ****** If $v \in \mathbb{R}^4$ such that Rv = 0, then v = 0.

6406532041809. \checkmark Neither L nor R is injective.

Question Number : 54 Question Id : 640653611415 Question Type : SA Calculator : None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

Find the smallest number k such that

 L^k and R^k become the zero

transformation.

 $(L^k = L \circ L \circ ...L, k \text{ times and})$

 $R^k = R \circ R \circ ...R, \ k \text{ times })$

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

4

Question Id: 640653611417 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers : (55 to 57)

Question Label: Comprehension

Let L_U denote an affine subspace with the associated subspace U of \mathbb{R}^3 .

	Affine Subspace L_U	La-	Associated subspace U	8	Dimension of L_U
(i)	$\{(x, y, z) \in \mathbb{R}^3 : x - y + z = 1,$ $-2x + 2y - 2z = -2, x - z = 1\}$	(a)	$\mathrm{span}\{(1,-1,0)\;,(0,2,1)\}$	(1)	2
(ii)	$\{(x,y,z) \in \mathbb{R}^3 : x+y-2z=5\}$	(b)	$span\{(2, -1, 3)\}$	(2)	1
(iii)	$\{(x,y-2,z+1) \in \mathbb{R}^3: \\ x+2y=0, 3y+z=0\}$	(c)	Nullspace of $A = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \\ 1 & 0 & -1 \end{pmatrix}$	(3)	1

Table: M2ES1

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 55 Question Id: 640653611418 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Choose the correct option to match the affine subspace of Row 1 with the associated subspaces and dimension.

Options:

6406532041816. *****
$$(i) \rightarrow (c) \rightarrow (1)$$

6406532041817. *
$$(i) \rightarrow (b) \rightarrow (1)$$

6406532041818.
$$\checkmark$$
 $(i) \to (c) \to (2)$

6406532041819. *****
$$(i) \rightarrow (a) \rightarrow (1)$$

Question Number: 56 Question Id: 640653611419 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Choose the correct option to match the affine subspace of Row 2 with the associated subspaces and dimension.

6406532041820. *****
$$(ii) \rightarrow (a) \rightarrow (3)$$

6406532041821.
$$\checkmark$$
 $(ii) \rightarrow (a) \rightarrow (1)$

6406532041822. *
$$(ii) \rightarrow (c) \rightarrow (2)$$

6406532041823. *****
$$(ii) \rightarrow (b) \rightarrow (1)$$

Question Number: 57 Question Id: 640653611420 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Choose the correct option to match the affine subspace of Row 3 with the associated subspaces and dimension.

Options:

6406532041824. *****
$$(iii) \rightarrow (a) \rightarrow (3)$$

6406532041825. *****
$$(iii) \rightarrow (c) \rightarrow (1)$$

6406532041826. *****
$$(iii) \rightarrow (a) \rightarrow (2)$$

6406532041827.
$$\checkmark$$
 $(iii) \rightarrow (b) \rightarrow (3)$

Sub-Section Number: 5

Sub-Section Id: 64065388150

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 58 Question Id: 640653611421 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following statement(s) is/are true?

Options:

6406532041828. *
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ are similar.}$$

6406532041829.
$$\checkmark$$
 $\begin{pmatrix} 1 & 6 \\ 3 & 4 \end{pmatrix}$ and $\begin{pmatrix} -2 & 0 \\ 0 & 7 \end{pmatrix}$ are equivalent.

6406532041830. \blacksquare If A^2 is similar to B^2 , then A is similar to B.

6406532041831. \checkmark If A and B are similar, then $A^2 = A$ implies $B^2 = B$.

Sub-Section Number: 6

Sub-Section Id: 64065388151

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653611422 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (59 to 63)

Question Label: Comprehension

Let
$$v_1 = (1, 2, 1), v_2 = (2, 1, -4)$$
 and $v_3 = (3, -2, 1)$ be vectors

in \mathbb{R}^3 equipped with usual inner product. Using this information,

answer the given subquestions

Sub questions

Question Number : 59 Question Id : 640653611423 Question Type : SA Calculator : None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

Suppose v = (7, 1, 9) and

 $v = \alpha v_1 + \beta v_2 + \gamma v_3$, then $\alpha =$

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

3

Question Number: 60 Question Id: 640653611424 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

Suppose v = (7, 1, 9) and

 $v = \alpha v_1 + \beta v_2 + \gamma v_3$, then $\beta =$

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

-1

Question Number: 61 Question Id: 640653611425 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

Suppose
$$v = (7, 1, 9)$$
 and $v = \alpha v_1 + \beta v_2 + \gamma v_3$, then $\gamma =$

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas : PlainText

Possible Answers:

2

Question Number: 62 Question Id: 640653611426 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

Let
$$u_1 = \frac{v_1}{\|v_1\|}$$
, $u_2 = \frac{v_2}{\|v_2\|}$ and $u_3 = \frac{v_3}{\|v_3\|}$

be the columns of the matrix A.

Then |det(A)| =

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas : PlainText

Possible Answers:

1

Question Number: 63 Question Id: 640653611427 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

Let
$$u_1 = \frac{v_1}{\|v_1\|}$$
, $u_2 = \frac{v_2}{\|v_2\|}$ and $u_3 = \frac{v_3}{\|v_3\|}$

be the columns of the matrix A. Then

Sum of the squares of the elements

of every row of A is ?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Sub-Section Number: 7

Sub-Section Id: 64065388152

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653611428 Question Type: COMPREHENSION Sub Question Shuffling

Allowed: No Group Comprehension Questions: No Question Pattern Type: NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (64 to 65)

Question Label: Comprehension

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection of \mathbb{R}^3 onto the space

 $W = \{(x, y, z) \colon x + y + z = 0\}.$

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 64 Question Id: 640653611429 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time:0

Correct Marks: 2

Question Label: Multiple Choice Question

Which of the following statement(s) is/are true?

Options:

$$T(x,y,z) = \frac{1}{3}(2x-y-z,-x+2y-z,-x-y+2z)$$
 6406532041837.

$$T(x,y,z) = \frac{1}{3}(-2x-y-z,-x-2y-z,-x-y-2z)$$
 6406532041838.

$$T(x,y,z) = \frac{1}{3}(2x - y - z, -x - 2y - z, -x - y - 2z)$$

Question Number: 65 Question Id: 640653611430 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Which of the following statement(s) is/are true?

Options:

The set of vectors $\{(1, -1, 0), (1, 1, -2)\}$

6406532041840. * forms a basis for the null space of T.

The set of vectors $\{(1, -1, 0), (1, 1, -2)\}$

6406532041841. \checkmark forms a basis for the range of T.

6406532041842. * The rank of T is 1.

Sub-Section Number :	8
Sub-Section Id :	64065388153
Question Shuffling Allowed :	Yes
Is Section Default? :	null
Question Number : 66 Question Id : 6406	53611431 Question Type : SA Calculator : None
Response Time : N.A Think Time : N.A Min	nimum Instruction Time : 0
Correct Marks : 2	
Question Label: Short Answer Question Consider the function $f(x, y, z) = z(\cos x + \sin y)$ directional derivative in the direction of $(6, 3, -2)$.	at the point (0, 0, 3). Find the
Response Type: Numeric	
Evaluation Required For SA : Yes	
Show Word Count: Yes	
Answers Type: Equal	
Text Areas: PlainText	
Possible Answers :	
1	
Sub-Section Number :	9
Sub-Section Id :	64065388154
Question Shuffling Allowed :	Yes
Is Section Default? :	null
Question Number : 67 Question Id : 6406	53611432 Question Type : MCQ Is Question
Mandatory : No Calculator : None Respon	nse Time: N.A Think Time: N.A Minimum Instruction
Time: 0	
Correct Marks : 2	
Question Label : Multiple Choice Question	
The function $T = x^2 + 2y^2 + 2z^2$ gives the tempoint $P = (1, 1, 1)$, in which direction should you	

$$(-\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})$$

6406532041845. *
$$(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$

6406532041847. *****
$$(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$$

Sub-Section Number: 10

Sub-Section Id: 64065388155

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653611433 Question Type: COMPREHENSION Sub Question Shuffling

 ${\bf Allowed: No\ Group\ Comprehension\ Questions: No\ Question\ Pattern\ Type: NonMatrix}$

Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction Time : 0

Question Numbers : (68 to 71)

Question Label: Comprehension

Let f	(x, y)	$= x^3 -$	3x +	y^3 -	$3y^2$.
---------	--------	-----------	------	---------	----------

	Critical points		$D = \text{determinant of Hessain}/f_{xx}$		Extrema
	(Column A)		(Column B)		(Column C)
i)	(1,2)	a)	$D > 0$ and $f_{xx} < 0$	1)	Saddle point
ii)	(-1,2)	b)	$D > 0$ and $f_{xx} > 0$	2)	local maximum
iii)	(-1,0)	c)	D < 0	3)	local minimum

Table: M2ES2

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 68 Question Id: 640653611434 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

The number of critical points

of the function f is

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type : Equal

Text Areas: PlainText

Possible Answers:

4

Question Number : 69 Question Id : 640653611435 Question Type : MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label : Multiple Choice Question

Choose the correct entries from columns B and C in table M2ES2 corresponding to the critical point (1, 2).

Options:

6406532041849. ***** $b \rightarrow 2$

6406532041850. ***** $c \rightarrow 1$

6406532041851. \checkmark $b \rightarrow 3$

6406532041852. ***** $a \rightarrow 2$

Question Number: 70 Question Id: 640653611436 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Choose the correct entries from columns B and C in table M2ES2 corresponding to the critical point (-1, 2).

Options:

6406532041853. ***** $b \rightarrow 2$

6406532041854. $\checkmark c \rightarrow 1$

6406532041855. ***** $b \rightarrow 3$

6406532041856. ***** $a \rightarrow 2$

Question Number: 71 Question Id: 640653611437 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Choose the correct entries from columns B and C in table M2ES2 corresponding to the critical point (-1,0).

Options:

6406532041857. ***** $b \rightarrow 2$

6406532041858. ***** $c \rightarrow 1$

6406532041859. ***** $b \rightarrow 3$

6406532041860. $\checkmark a \rightarrow 2$

Sem2 Intro to Python

Section Id: 64065341322

Section Number: 4

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 15